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ABSTRACT

After reviewing some recent developments in
supercomputer access, I discuss a few areas where
perturbation theory and lattice gauge simulations
make contact. I conclude with a brief discussion
of a deterministic dynamics for the Ising model.
This may be useful for numerical studies of

nonequilibrium phenomena.

SUPERCOMPUTER ACCESS

Monte Carlo calculations in lattice gauge
theory have made theorists avid consumers of
computer time. This need has often become
difficult to meet, particularly at American
universities with rather limited computational
facilities. 1In order to iavestigate the
severity of this problem, the High Energy Physics
Advisory Panel (HEPAP) has receutly commissioned
two subpanels of which I am 2 member. The first
was requested to study "the utilization and need
for large scale computation for high energy physics
theory research and to explore the benefits of
access to a supercomputer.” The second supbanel
was asked for "recommendations relative to the
automatic data processing rescurces needed during
the next decade to maintain a forefront U.S. high
energy physics program.”

The theory panel, chaired by C. Quigg of
Fermilab, presented its report at the HEPAP meeting
at SLAC in September of this year., This report
addressed the immediate short term needs of the
community, leaving longer term issues to the other
subpanel. The main conclusion of this report was
that theoretical computing now needs the equivalent
of three class VI machines. The dominant use is
for lattice gauge calculations, which should cccupy
two thirds of this capacity. The majority of the
remaining supercomputing time is needed for design

studies related to the SSC.

In addition, the report noted the necessity
for a good computing enviromment to efficiently
utilize this capacity. In particular, university
ugers will need good networks and access
equipment. Finally the report emphasized that
research in special purpose devices as well as
array processors should be pursued as potential
routes to vast amounts of economical computational
power .

The second subpanel, chaired by J. Ballam of
SLAC, will address both experimental and theoreti-
cal needs for the next decade. This group plans on
presenting a report in March of 1985. Some
interesting issues which need to be resolved are
whether theorists can efficiently utilize the same
machines as used for experimental data procéssing
and whether the high energy physics community
should set up one or more special centers to handle
the massive amounts of computation anticipated in
the future.

I should note that in the immediate future it

appears that we will have a rather abrupt increase

"in the availability of supercomputing time. The

MFE computing center at Livermore has added a CRAY
XMP teo its facility. This machine will be devoted
to providing supercomputing to people doing energy
research for the DOE. In particular, high energy
physics should get several thousand hours of this
time. The DOE is also installing a CYBER 205 at
Florida State University. The theoretical
community will hopefully become major users of this
machine. Finally, the NSF has a computer
initiative with 40 million dollars allocated for
1985, Of this, about 30 million dollars will be
used to buy time on existing supercomputers for use

by various research groups.



MONTE CARIO SIMULATION AND PERTURBATION THEORY
Let me now turn to physics. Lattice gauge
theory has become our primary tool for the study of
non—perturbative phenomena in the non-Abelian gauge

theory of the strong interactions. Its successes
in investigating long distance phenomena have
nicely complemented the use of perturbation theory
in the short distance domain. What I would like to
do in this talk is mention a few cases where
perturbation theory and Monte Carloe simulations
have been able to make comtact.

At a fairly trivial level, perturbation theory
is useful for the initial testing of a Monte Carlo
program. Indeed, the perturbative prediction for
the expectation value of the action should be
approached as the coupling becomes small. This
plus a matching with a low order stromg coupling
expansion are essential for establishing confidence
in any new program.

A slightly more sophisticated use of
perturbation theory is for improving Monte Carlo
renormalization group calculations. Two rather
different approaches have been recently used for
this purpose. The first is the "canonical”
approach as developed by the "canons" Wilson and
Radanoffl. Here one starts with a theory on a fine
lattice and attempts to integrate out some of the
degrees of freedom to obtain an equivalent theory
on a coarser lattice. For example, given a lattice
partition function defined in terms of an action
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we can define a renormalized action on a coarser

lattice by integrating out some of the variables
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The partition function is now given by an integral
over the block variables U
_ -asR(ﬁ)
zZ={ (D) e (3>
An example of a possible blocking is that of
Swendsen where the variable T is chosen to be the

group element closest to the sum over 7 paths of

the product of the original lattice variables

linking sites separated by two fundamental lattice
units.? 4

Although equation (3) is exact, the
renormalized action S depends in principle on an
infinite number of couplings involving arbitrarily
separated links. Therefore, in any practical
calculation some truncation is necessary. The
severity of this truncation will in general depend
on the kernal K defining the block variables. It
is here that perturbation theory can provide a
useful guide. In particular, the blocking
procedure should give a shift in the bare coupling
only to order goq. Recently Gocksch and Ogilvie
have perturbatively studied the Swendsen procedure
with a truncation down to a single coupling

3

constant”. This gives an unwanted tree level shift

in the bare coupling. They then suggested a
modification of the Swendsen procedure, wherein
those paths of length 4 are weighted less heavily
than paths of length 2. They found that a factor
of 0.125 in front of the longer paths made the tree
level shift wvanish.

A second technique for remormalization group
studies is the ratic method presented in ref. (4).
Here one constructs a dimensionless ratio of Wilsonm
loops which should be finite in a continuum limit,
In particular, it should be constructed so that all
self energy divergences cancel. Such a ratio R
will be a function of the size r of the loops used,.
the lattice spacing a, and the bare coupling gg,
which upon renormalization becomes itself a
As R should be finite

when & goes to zero, we should have

function of the cutoff.

R(r,a,gpla)) = R(r,a/2,gy(a/2}) + 0(a?/r?)
= R(2r,a,g9(a/2)) + 0(a?/r?) (4)

The final step in this equation is dimensional
analysis. Thus we see that by comparing such
ratics measured on two length scales, we can
determine how the bare coupling changes under a
change of the cutoff by a factor of two.

The main approximation in this second
renormal ization group approach is the need to drop
the order a?/r? terms. In ref. (5) it has been
argued that perturbation theory can be useful here
as well. Those authors form linear combinations of
physical ratios so that any tree level shift in the

coupling coming from these correction terms will



cancel. They also suggest that one could further
constrain these combinations so that the ome loop
shift will agree with the continuum perturbative
result. .

Let me now change the subject slightly and
discuss the perturbative corrections to mass ratios
calculated on a lattice of finite spacing. As
should be familiar, in lattice gauge theory we are
interested in measuring quantities such as a
correlation length £ on the lattice. The inverse
of this quantity represents the mass of some

particle im lattice units

£} = pa (5)

Asymptotic freedom tells us how the lattice spacing
is related to the bare coupling as we go to the
continuum limit
-81/2B9% -1/(2B48¢2) |
a = (a/Ay)(gg284) e (1 + 0(gg?N)
(6)

where By and 8; are the first two coefficients in
the perturbative expansion of the ;enormalization
group function®. If we can measure how the
correlation length diverges as the bare coupling
goes to zero, then we are effectively meaguring the
particle mass in units of Ay, an integration
constant of the renormalization group equation.
Since the initial measurements of the square
root of the string tension via this technique, the
numerical value has drifted by a factor of nearly
two as the calculations improved. This has been
blamed on the (1+0(guz)) terms in Eq. (6) and the
corresponding violation of asymptotic scaling. I
would like to argue, however, that ratios of
masses, such as the glueball mass to the square
root of the string tension, should scale
considerably better. Indeed, I will now review a
well known argument that such mass ratios with a
finite cutoff will differ from their continuum
values by terms which go to zero faster than any
power of the coupling
mi(a)/my(a) = my (0)/my(0) (1 + 0(a?/m?)) -

~1/(Bggq?)
)

= m{0)/mp(0) (1 + O(e ).

I will present the argument in conventional

perturbative language, in terms of a renormalized

coupling defined at some scale p. Such a
renormalized coupling can be perturbatively

expanded as a power series in the bare coupling

g = gp(na,gp) = i cn(ua)ggn _ (8)

As is well known, the coefficients in this series
are logarithmically divergent as the cutoff a is
taken to zero. A renormalization scheme at scale u
determines the bare coupling as a function of the
lattice spacing by requiring that the renormalized
coupling be fixed as a is varied. Inverting eq.
(8) gives the bare coupling as a function of the

renormalized one

2o = I En(ua)gkn (9)
n
We now wish to compare renormalizing the
theory at two different scales, uw; and ny. In
particular, how much does gR("Z) vary if gR(ul) is
held fixed? Consider expanding the renormalized
coupling at one scale in terms of the coupling at

the other

SR(uga,gg) =z dngR“(ula,go)
n

= i cn(uza)(i Em(ula)ng(ula,go))n
(10)

Since both renormalized couplings are finite in the
continvum limit, all divergences must cancel from

the coefficients dn. Furthermore, the coefficients

€ and En cannot have any inverse logarithms. Thus
any finite cutoff variation of the dn must take the

form

d (up/uz,uya) = 4 (u1/uz,0) + 0Ga%y®) Q1)

This means that if g (u;) is held fixed, then
gp{ng) will be constant up to terms of order a?,
which is of order exp(-1/(Bpg¢2)). Now a possible
non—perturbativelrenormalization scheme would be to
hold some physical particle mass fixed. Extrapo-
lating the above result to such a scheme, we reach
our ‘conclusion that any other mass will be fixed up
to terms which vanish faster than any power of the
bare coupling.

As a final point of contact between perturba-

ion theory and lattice results, let me describe a



recent comparison of the asymptotic freedom scales
for S0{3) and SU(2) lattice gauge theories’. These
theories both have the same SU(2) Yang-Mills theory
for their naive classical limit, and thﬁs their
comparison is essentially a test of universality of
the continuum limit. This particular comparison is
interesting for several reasoms. PFirst, the models
differ in their phase structure at finite cutoff;
in particular the S0(3) model exhibits a first
order phase transitions,while the SU(2) one has no
transition. Second, the fundamental representation
Wilson loops vanish triwially for S0(3), which does
net recognize the group center. This means that a
string temsion is difficult to defime and it is
simpler to use other quantities for matching
purposes. Finally, the $0(3) model has "monopoles"
of low action when the cutoff is finite. These
should be suppressed in the continuum limit, but
are presumably the source of the S0(3) phase
transition®,

If the continuum limit is indeed universal,
then these two cutoff schemes should differ at most

in the scale parsmeter, which we denocte by A_ or AA

F
for the SU(Z) or S0(3) formulations, respectively.
The ratio of the corresponding parameters follows

from a one loop caleulation, which gives!®?

AF/AA = 28.9 12

The goal of ref. (7) was to verify this
perturbative result usigg Monte Carlo simulation.
In addition to the above points, this calculation
is technically interesting for several reasons.
First, the numerical value in eq. (12) is rather
large, particularly in comparison with other
checks of universality. Indeed, S0(3) is a rather
large variation on the standard SU(2) model.
Secondly, because the fundamental loops wvanish
trivially for S0(3), we are forced to use adjoint
loops in our comparison. This shows that ome can
use more abstract physical guantities than the
string temsion for such calculations. Third, we
must work on the weak coupling side of the SO0(3)
phase transition, which occurs at a rather small
value of the bare coupling constant. We will be
matching physical quantities when the SU(2)
coupling 8 = 4/302 is in the vicinity of 10. If we
use previous values of the string temsion to

normalize our scale and ser this to its physical

SU(3) value, then we are working with lattice
spacings on the order of 10722 cm. At such a
lattice spacing any string tension would be
extremely small and the correlation length is much
larger than the lattice; nevertheless, we obtain
some physically meaningful results. Finally, even
though the coupling is rather small, this extreme
variation on the lattice action gives rise to
rather large two loop corrections

Our procedure was to form a ratio of loops
which cancels any ultravioclet divergences. From
this we define a renormalized coupling which we
then match between the two models. For example, in
fig. 1 we show the rencrmalized coupling calculated

from the ratio

_ W(2,2) W(1,1)

(13)
(w(1,2))?2

R

where W(I,J)} represents an adjoint Wilson loop of
size I by J. By plotting the inverse of the
respective couplings, the one loop change in bare
couplings becomes a shift in the respective

curves. Measuring this shift at various couplings,
we obtain a raw value for the ratio of AF/AA which
ranges from 30 to 90 depending on the value of the
bare coupling used in the comparison. Applying the
two loop correction as calculated in ref. (11),
this number becomes more stable with a value
ranging from 21 to 34, which we regard as quite
acceptable agreement with eq. (12).

In our calculations we also tried matching
single Wilson loops directly, Although these have
naive perturbative divergences, with both actions
we are working with the same value for the cutoff
and thus the divergences should match to lowest
order. This matching will persist to ome loop
because the basic diagram which shifts the
divergent part is the same one that gives the shift
in the finite part of the loop. We do not kmow if
this matching of the loops themselves is justified
to still higher order, although naively applying
the two loop corrections of ref. (12) gives
excellent agreement with the ratio of AF/AA as

calculated above.
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FIG. 1. The inverse renormalized coupling at

a scale of 2 lattice spacings as
calculated from the ratio in eq. 13.
This is given as a function of the
inverse bare coupling for both
fundamental and adjoint actions.

DETERMINISTIC ISING DYNAMICS

Let me now sharply change the subject and

conclude this talk with a brief mention of a model -

which I am currently developing. This is a
deterministic cellular automaton rule which will
simulate the Ising model. The idea is to formulafe
a simple deterministic dynamics for the numeriecal
study of nonequilibrium phenomena such as .
relaxation and heat flow. The algoritilm is a
generalization of the microcanonical Monte Carle
method discussed in ref. (12). However in this
case the "demons" of that reference do not move
around, but are attached to the Ising sites and
play the role of a momentum conjugate to the
spine. The updating is dome in a checkerboard
style to avoid simultaneous flipping of nearest
neighbors,

The procedure differs conceptually from the

dynamics presented by Glauber!3 in that the

evolution of a given configuration is purely
deterministic. Also we have a locally defined

energy which is precisely conserved. The

" temperature is not a parameter defining the

dynamics, but is a statistical concept, defined
only by averages over space or time or both.

The method has the practical advantage that
all operations on the spins and the momentum
variables are simple bit manipulatioms. Thus the
algorithm can use such techniques as multi-spin
coding to run extremely fast on conventiecnal
computers. Indeed, it is capable of simulating the
heat equation, a rather generic partial
diffarential equation, without using any floating
point arithmetic. It would be interesting to see
if such a technique is generally a more efficient
approach to solving such equations than

conventional discretizations.
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